•  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
期刊检索


检索
检索项:
检索词:
总目录
  • WCSB9︱2019(第九届)世界采样和混样大会 查看全文>>
  • 关于召开第十五届全国青年分析测试学术报告会的通知 查看全文>>
友情链接
二维相关光谱在大米中甲基毒死蜱特征变量优选的应用
    点此下载全文
作者单位
胡潇,黄俊仕,朱晓宇,刘鹏,吴瑞梅,邱霞,艾施荣 1.江西农业大学计算机与信息工程学院2.江西农业大学工学院3.江西农业大学食品科学与工程学院 
基金项目:国家自然科学基金资助项目(31460315);江西省对外科技合作计划(20151BDH80065)
中文摘要:为提高大米中农药残留的表面增强拉曼光谱(SERS)快速检测精度,提出采用二维相关光谱(2DCOS)对大米拉曼光谱进行农药特征变量优选。首先,采用标准正态变量变换(SNV)对原始光谱预处理,再以甲基毒死蜱浓度为外扰,进行二维相关同步光谱和自相关谱解析,筛选出与甲基毒死蜱浓度变化最相关的特征谱峰,建立了大米中甲基毒死蜱残留浓度的支持向量机(SVM)分析模型,并与偏最小二乘(PLS)模型进行性能比较。结果表明,2DCOS方法能很好地筛选出与甲基毒死蜱浓度相关的特征谱峰;利用2DCOS优选出的4个甲基毒死蜱特征谱峰所建立的SVM模型性能优于PLS的实验结果,模型对预测集样本相关系数(RP)为0.96,均方根误差(RMSEP)为5.21,相对分析误差(RPD)为3.66,可用于大米中甲基毒死蜱农药残留的实际估测。研究表明,采用2DCOS优选大米中甲基毒死蜱浓度相关的特征变量是可行的,且能简化模型,提高模型预测精度,从而为拉曼光谱用于食品农产品质量安全的快速检测提供了一种新思路。
中文关键词:表面增强拉曼光谱(SERS)  二维相关光谱(2DCOS)  特征变量优选  快速检测  大米  甲基毒死蜱
 
Application of Two-dimensional Correlation Spectroscopy in Optimization of Characteristic Variables for Chlorpyrifos-methyl in Rice
Abstract:A two dimensional correlation spectroscopy(2DCOS) was presented to optimize the characteristic variables for pesticide residues in rice,in order to improve the accuracy for the rapid detection of pesticide residues in rice based on surface enhanced Raman spectroscopy(SERS).Firstly,the original spectra were pretreated using standard normal variable transformation(SNV),then the two dimensional correlation spectrum and diagnosis spectrum were analyzed with chlorpyrifos methyl concentration as the disturbance.The characteristic peaks of chlorpyrifos methyl were optimized based on the two dimensional correlation spectroscopy and diagnosis spectroscopy.A support vector machine(SVM) model for analyzing chlorpyrifos methyl residues in rice was developed,and was compared with the PLS model.Results showed that 2DCOS was a wonderful way for screening out the characteristic peaks related to the chlorpyrifos methyl.The performance of SVM model based on 4 chlorpyrifos methyl characteristic peaks selected by 2DCOS was better than that of the PLS model.The correlation coefficient(Rp) in the prediction set was 0.96,the root mean square error of prediction(RMSEP) was 521,and the relative prediction deviation(RPD) was 3.66,which indicated that the developed model could be used for the actual estimation of chlorpyrifos methyl pesticide residues in rice.Results showed that 2DCOS is feasible for screening characteristic peaks related to chlorpyrifos methyl in rice by simplifying the model and improve the prediction accuracy.It provides a new idea for the rapid detection of food and agricultural products by Raman spectroscopy for quality and safety.
Key Words:surface enhanced Raman spectroscopy(SERS)  two dimensional correlation spectroscopy(2DCOS)  characteristic variable optimization  rapid detection  rice  chlorpyrifos methyl
引用本文:胡潇,黄俊仕,朱晓宇,刘鹏,吴瑞梅,邱霞,艾施荣.二维相关光谱在大米中甲基毒死蜱特征变量优选的应用[J].分析测试学报,2019,(8):946-952.
摘要点击次数: 72
全文下载次数: 124
查看全文  查看/发表评论  下载PDF阅读器