•  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
期刊检索


检索
检索项:
检索词:
总目录
  • WCSB9︱2019(第九届)世界采样和混样大会 查看全文>>
  • 关于召开第十五届全国青年分析测试学术报告会的通知 查看全文>>
友情链接
近红外光谱技术结合教与学算法优化极限学习机实现烤烟等级判定
    点此下载全文
作者单位
沈欢超,耿莹蕊,倪鸿飞,王辉,吴继忠,廖付,陈勇,刘雪松 1. 浙江大学 药学院浙江 杭州 310058 2. 浙江大学 智能创新药物研究院浙江 杭州 310018 3. 浙江中烟工业有限责任公司技术中心浙江 杭州 310008 
基金项目:浙江大学-浙江中烟联合实验室项目资助
中文摘要:该研究基于近红外光谱(NIRs)技术,以2016~2018年来自13个省份的937个烟叶样本为研究对象,比较了竞争性自适应重加权采样方法(CARS)、蒙特卡洛无信息变量消除法(MC-UVE)以及随机青蛙算法(RF)3种变量筛选方法的极限学习机(ELM)模型效果,与常规判别方法偏最小二乘判别分析(PLS-DA)比较,验证了ELM模型的优势。并通过教与学优化(TLBO)算法对ELM模型进行优化,建立烤烟样本的等级判定模型。结果表明,验证集的分类正确率达到90.16%,测试集的外部验证表现良好,TLBO-ELM模型收敛速度快,泛化能力强,可应用于烤烟等级判定。近红外光谱技术结合教与学算法优化极限学习机为智能化实现烟叶等级判定提供了一种新方法。
中文关键词:近红外光谱技术  教与学优化算法  极限学习机  烟叶  等级判定
 
Grade Determination of Flue-cured Tobacco by Near Infrared Spectroscopy Combined with Teaching-learning-based Optimization Algorithm Optimized Extreme Learning Machine
Abstract:The quality evaluation on tobacco is an important work as it is a high-value attribute product.Therefore,it is of a certain application value to ultilize intelligent means for efficient classification of tobacco.Based on near infrared spectroscopy(NIRs),937 tobacco samples from 13 provinces from 2016 to 2018 were used to compare the extreme learning machine(ELM) model effects of three variable screening methods,including competitive adaptive reweighted sampling(CARS) method,Monte Carlo uninformed variable elimination(MC-UVE) method and random frog(RF) algorithm.Compared with partial least squares-discriminant analysis(PLS-DA),the advantages of ELM model were verified.The ELM model was optimized by teaching-learning-based optimization(TLBO) algorithm,thus a TLBO-ELM classification model for flue-cured tobacco samples was established.Results showed that the classification accuracy of the validation set was 90.16%.The external verification effect of the testing set was satisfactory,and the TLBO-ELM model had fast convergence speed and strong generalization ability,which could be applied to the classification of flue-cured tobacco.NIRs combined with TLBO to optimize ELM provides a new idea for intelligent tobacco classification.
Key Words:near infrared spectroscopy  teaching-learning-based optimization algorithm  extreme learning machine  tobacco  grade determination
引用本文:沈欢超,耿莹蕊,倪鸿飞,王辉,吴继忠,廖付,陈勇,刘雪松.近红外光谱技术结合教与学算法优化极限学习机实现烤烟等级判定[J].分析测试学报,2022,41(7):1052-1057.
摘要点击次数: 187
全文下载次数: 331
查看全文  下载PDF阅读器